Clinical Psychopharmacology and Neuroscience indexed in CAS, DOI/Crossref, EMBASE, Korea Citation Index (KCI), KoreaMed, Korea Medical Citation Index (KoMCI), PubMed, PubMed Central (PMC), SCOPUS, SCI-expanded (SCIE), and Google Scholar:eISSN 2093-4327   pISSN 1738-1088

Cited by CrossRef (15)

  1. A. Ramanathan, T. Christy Bobby. Modeling, Machine Learning and Astronomy. .
    https://doi.org/10.1007/978-981-33-6463-9_7
  2. Junpeng Zhang, Thin Nguyen, Buu Truong, Lin Liu, Jiuyong Li, Thuc Duy Le. Advanced Data Mining and Applications. .
    https://doi.org/10.1007/978-3-030-65390-3_31
  3. . .
    https://doi.org/
  4. Md Rezanur Rahman, Maria Cristina Petralia, Rosella Ciurleo, Alessia Bramanti, Paolo Fagone, Md Shahjaman, Lang Wu, Yanfa Sun, Beste Turanli, Kazim Yalcin Arga, Md Rafiqul Islam, Tania Islam, Ferdinando Nicoletti. Comprehensive Analysis of RNA-Seq Gene Expression Profiling of Brain Transcriptomes Reveals Novel Genes, Regulators, and Pathways in Autism Spectrum Disorder. Brain Sciences 2020;10:747
    https://doi.org/10.3390/brainsci10100747
  5. Eda Sünnetçi, Ferit Durankuş, Yakup Albayrak, Mümin Alper Erdoğan, Özüm Atasoy, Oytun Erbaş. Effects of the Prenatal Administration of Tetanus Toxoid on the Sociability and Explorative Behaviors of Rat Offspring: A Preliminary Study. Clin Psychopharmacol Neurosci 2021;19:84
    https://doi.org/10.9758/cpn.2021.19.1.84
  6. . .
    https://doi.org/
  7. Adrian B. R. Shatte, Delyse M. Hutchinson, Samantha J. Teague. Machine learning in mental health: a scoping review of methods and applications. Psychol. Med. 2019;49:1426
    https://doi.org/10.1017/S0033291719000151
  8. Dong Ik Park. Autism. 2019.
    https://doi.org/10.1016/bs.pmbts.2020.04.017
  9. Mateusz Garbulowski, Karolina Smolinska, Klev Diamanti, Gang Pan, Khurram Maqbool, Lars Feuk, Jan Komorowski. Interpretable Machine Learning Reveals Dissimilarities Between Subtypes of Autism Spectrum Disorder. Front. Genet. 2021;12
    https://doi.org/10.3389/fgene.2021.618277
  10. G. Guelfi, A. B. Casano, L. Menchetti, M. Bellicci, C. Suvieri, L. Moscati, P. Carotenuto, M. M. Santoro, S. Diverio. A cross-talk between blood-cell neuroplasticity-related genes and environmental enrichment in working dogs. Sci Rep 2019;9
    https://doi.org/10.1038/s41598-019-43402-4
  11. . .
    https://doi.org/
  12. Hyeonjin Jeon, Seung-Hwan Lee. From Neurons to Social Beings: Short Review of the Mirror Neuron System Research and Its Socio-Psychological and Psychiatric Implications. Clin Psychopharmacol Neurosci 2018;16:18
    https://doi.org/10.9758/cpn.2018.16.1.18
  13. Troy Vargason, Genevieve Grivas, Kathryn L. Hollowood-Jones, Juergen Hahn. Towards a Multivariate Biomarker-Based Diagnosis of Autism Spectrum Disorder: Review and Discussion of Recent Advancements. Seminars in Pediatric Neurology 2020;34:100803
    https://doi.org/10.1016/j.spen.2020.100803
  14. Karthik Sekaran, M. Sudha. Predicting autism spectrum disorder from associative genetic markers of phenotypic groups using machine learning. J Ambient Intell Human Comput 2020
    https://doi.org/10.1007/s12652-020-02155-z
  15. Jinting Guan, Yang Wang, Yiping Lin, Qingyang Yin, Yibo Zhuang, Guoli Ji. Cell Type-Specific Predictive Models Perform Prioritization of Genes and Gene Sets Associated With Autism. Front. Genet. 2021;11
    https://doi.org/10.3389/fgene.2020.628539